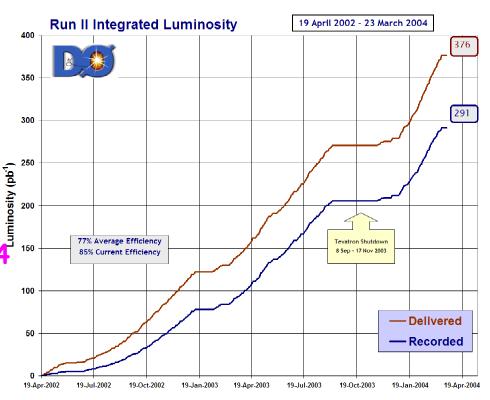


Moriond Results from DØ

Andrei Nomerotski (Fermilab) for DØ collaboration


Wine & Cheese 3/26/2004

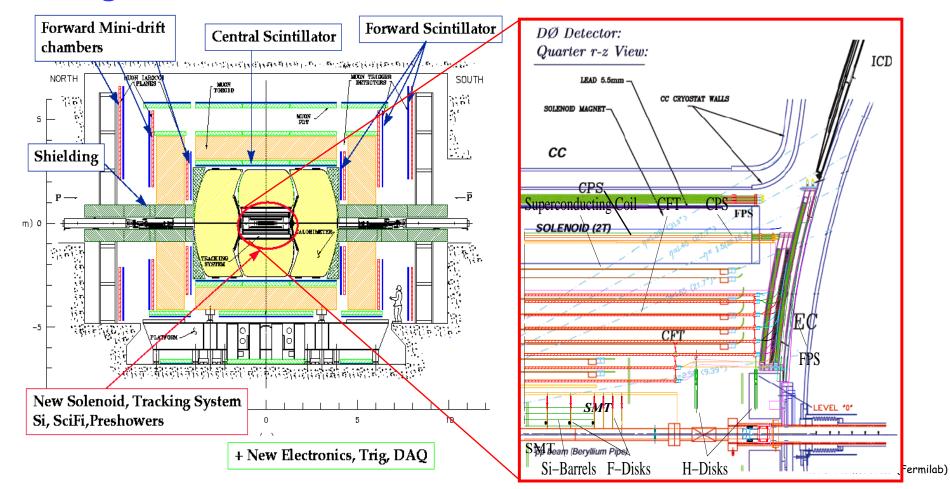
- This talk covers analyses presented at Moriond 2004 on
 - B Physics
 - New Phenomena searches
- A lot of exciting new results!
- Current datasets
 - ~300 pb⁻¹ on tape ~200 pb⁻¹ analyzed ~100 pb⁻¹ Run I

Status

 Excellent performance of Accelerator Division in • DØ recorded 70 pb⁻¹ in 2004 2004 - THANK YOU!

- Important milestone : reprocessed full dataset in Fall 2003
 - * Greatly improved tracking performance
 - Good fraction processed off-site
 - Analyses shown today use up to 250 pb⁻¹

B Physics

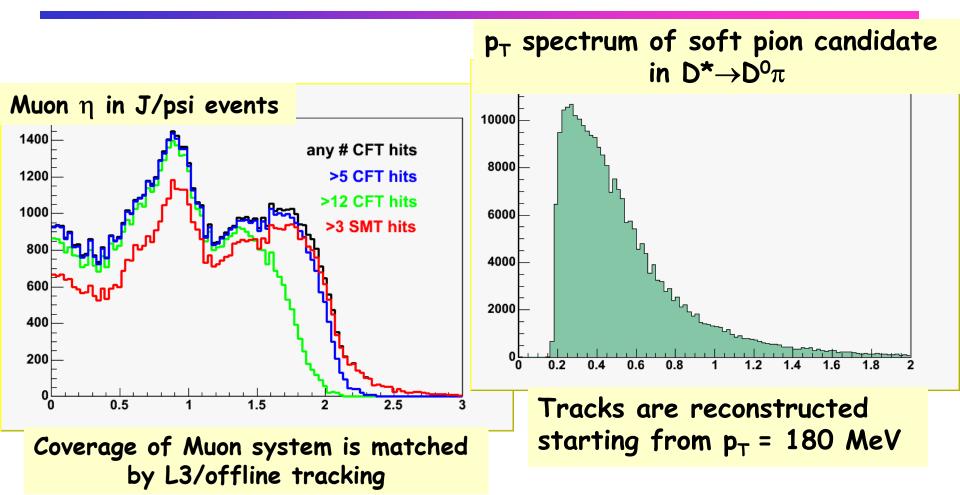

Will present here

- Measurement of Lifetime Ratio for B⁰ and B⁺ Mesons
- Flavor Oscillations in B_d Mesons with Opposite Side Muon Tagging
- Observation of Semileptonic B decays to Narrow D** Mesons
- Observation of X(3872) at DØ
- Sensitivity Analysis of Rare Bs@mm Decays
- Key for DØ B-physics program : Successful combination of 3 main components
 - Muon system
 - Tracker
 - Muon trigger

Muon System and Tracker

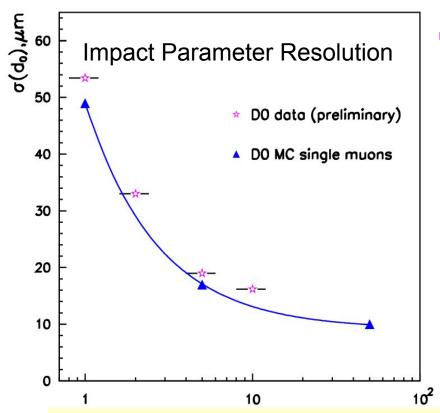
- New forward muon system with $|\eta|<2$ and good shielding
- 4-layer Silicon and 16-layer Fiber Trackers in 2 T magnetic field

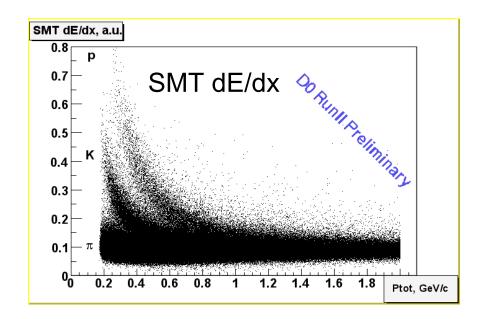
Triggers for B physics


- Robust and quiet single- and di-muon triggers
 - Large coverage |η|<2
 - Variety of triggers based on
 - ▲ L1 Muon & L1 CTT (Fiber Tracker)
 - ▲ L2 & L3 filters
- Typical total rates at medium luminosity (40 10³⁰ s⁻¹cm⁻²)
 - Di-muons: 50 Hz / 15 Hz / 4 Hz @ L1/L2/L3
 - Single muons: 120 Hz / 100 Hz / 50 Hz @ L1/L2/L3
 - \blacktriangle Rates before prescaling: typically single muon triggers are prescaled or/and used with raised $p_{\sf T}$ threshold at L1
 - ▲ Muon purity 90% all physics!
 - Current total trigger bandwidth

1600 Hz / 800 Hz / 60 Hz @ L1/L2/L3

 B-physics semi-muonic yields are limited by L3 filters and L3 bandwidth

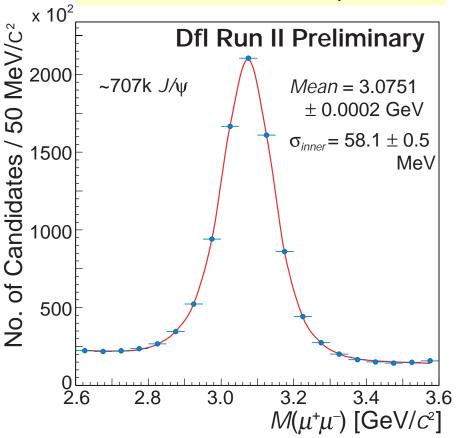

Tracking Performance



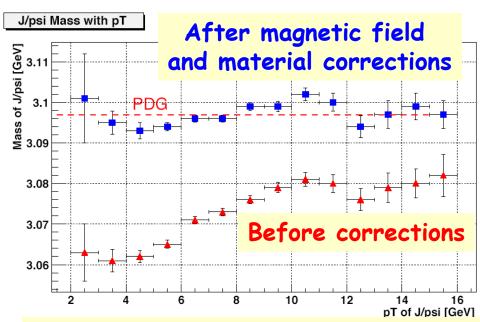
This greatly enhances our B-physics program

Tracking Performance

- $\sigma(DCA) \approx 16 \ \mu m$ @ P_T = 10 GeV $\sigma(DCA) \approx 54 \ \mu m$ @ P_T = 1 GeV
- Resolution compares well with MC


NOT yet used for PID

More tracking improvements under way



Calibrations using J/ ψ sample

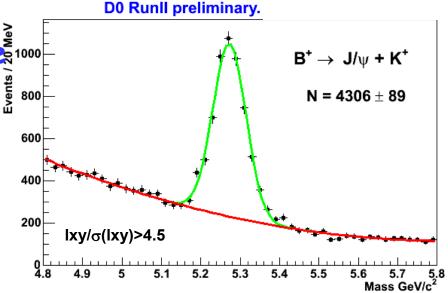
Mass resolution 60 MeV/c² in agreement with expectations

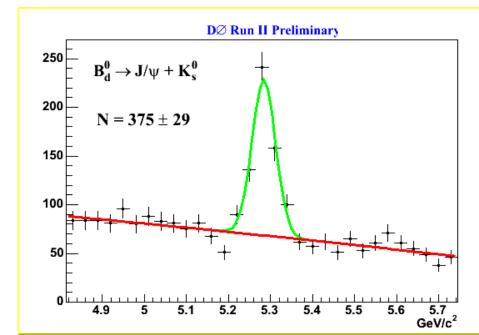
- J/ψ mass is shifted by 22 MeV
- Observe dependence on Pt and on material crossed by tracks
- Developed correction procedure based on field & material model
- Finalizing calibration of momentum scale using J/ψ, Ks, D⁰
 NOT yet used

Exclusive B Decays

• Accumulated large exclusive samples of B+ and B⁰

Find in 250 pb⁻¹:

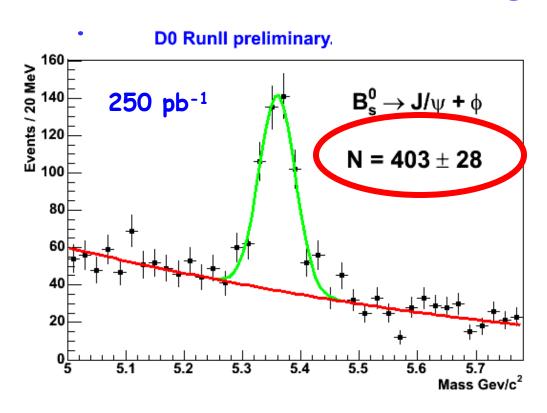

$$B^+ \rightarrow J/\psi K^+ 4300$$
 events


$$B^0 \rightarrow J/\psi K^*$$
 1900 events

$$B^0 \rightarrow J/\psi K_s$$
 375 events

$$\Lambda_b \rightarrow J/\psi \Lambda$$
 52 events

- Good S/B
 - ▲ Lifetime cuts applied

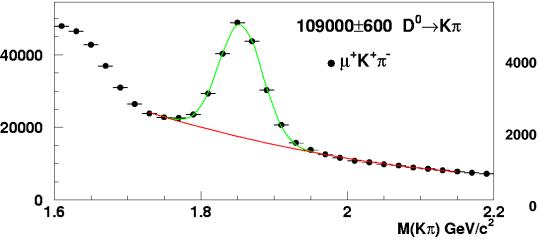


Exclusive B_s Sample

DØ accumulated the world largest sample of exclusive

 $B_s \rightarrow J/\psi \phi (\rightarrow K^+K^-)$ decays

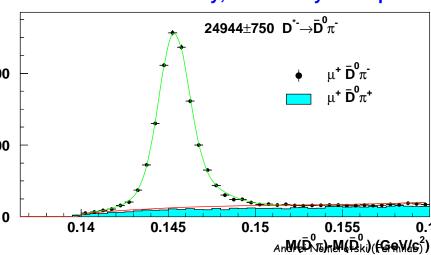
Some lifetime cuts applied


- We have good potential in all B \rightarrow J/ ψ exclusive modes, work in progress on
 - * Lifetime measurement of different B species
 - Studies of CP effects in B_s & B_d mesons

Semileptonic B_d sample

- Collected by low p_T single muon triggers
- 109k B $\rightarrow \mu \nu$ D° candidates
- 25k $B \rightarrow \mu \nu D^*$ candidates
 - D* yield 50% higher for looser selections
- Plots below have (offline) lifetime cuts

DØ RunII Preliminary, Luminosity=250 pb⁻¹


$$B \rightarrow \mu \nu D^0 X$$
 $K^+\pi^-$

Sample compositions:

"D° sample": 82% from B° "D* sample": 86% from B°

Estimates based on measured branching fractions and isospin relations.

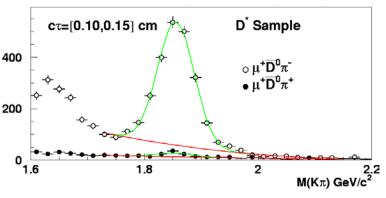
DØ RunII Preliminary, Luminosity = 250 pb⁻¹

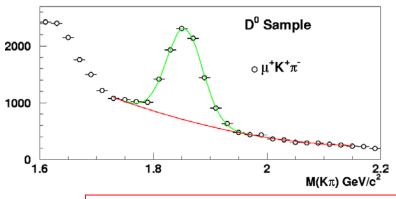
Novel Analysis Technique

- Measure directly ratio of lifetimes instead of measuring absolute lifetimes
 - Group events into 8 bins of Visible Proper Decay Length (VPDL):

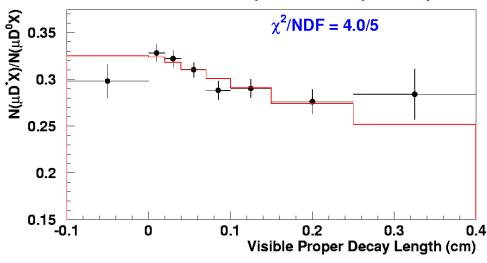
VPDL =
$$L_T / p_T(\mu D^0) \cdot M_B$$
 L_T = transverse decay length

- Measure $r = N(\mu D^*)/N(\mu D^0)$ in each bin
 - \blacktriangle In both cases fit D⁰ signal to extract N(μ D)
- If relative D*/D0 efficiency does not depend on VPDL it does not affect the lifetime ratio =>
 - Reconstruct slow pion from D* without biasing lifetime
 - \blacktriangle Only requirement on slow pion is to give correct m(D*)-m(D0) value
 - ▲ Slow pion is NOT used for calculation of VPDL


NOT used in B-vertex NOT used in k-factors



$\tau(B^+)/\tau(B^0)$: Result


DØ Runll Preliminary, Luminosity=250 pb⁻¹

Use binned χ^2 fit of event ratios to determine $\tau(B^+)/\tau(B^0)$

DØ RunII Preliminary, Luminosity = 250 pb⁻¹

Preliminary result:

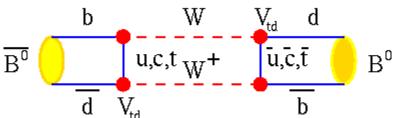
 $\tau(B^+)/\tau(B^0) = 1.093 \pm 0.021$ (stat) ± 0.022 (syst)

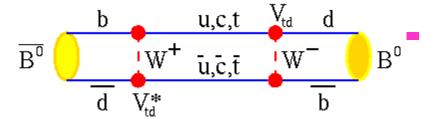
$\tau(B^+)/\tau(B^0)$

Systematics dominated currently by:

- time dependence of slow pion reconstruction efficiency
 - relative reconstruction efficiencies
 - Br(B⁺ $\rightarrow \mu^+ \nu D^{*-} \pi^+ X$)
 - K-factors
- decay length resolution differences $D^0 \leftrightarrow D^*$

Work in progress to decrease the error

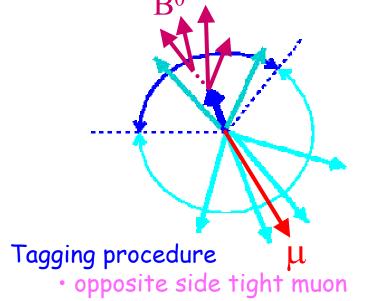



New DØ result

(average not updated, plot not official or approved by HFAG)

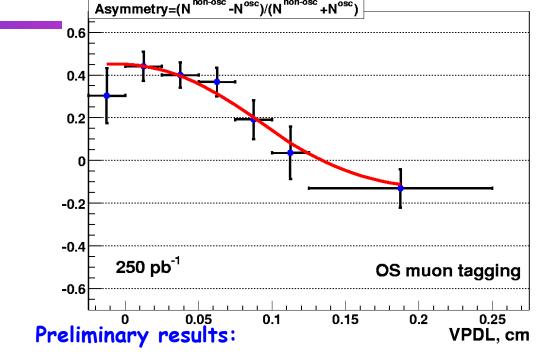
This is one of the most precise measurements to date

B⁰/B⁰ mixing



- In SM B_d mixing is explained by box diagrams
 - Constrains V_{td} CKM matrix element
 - * Mixing frequency Δm_d has been measured with high precision at B factories (0.502 \pm 0.007 ps⁻¹)
- We use our large sample of semileptonic \mathbf{B}_d decays to measure $\Delta \mathbf{m}_d$
 - * Benchmark the initial state flavor tagging for later use in B_s and Δm_s measurements
 - Can also constrain more exotic models of b production at hadron colliders
 - ▲ light gluino & sbottom production (Berger et al., Phys.Rev.Lett.86,4231(2001))

B⁰/B⁰ Mixing: Milestone!


DØ Run II Preliminary

- · muon p_T > 2.5 GeV/c
- $\cos \Delta \phi(\mu, B)$ < 0.5

Fit procedure

• Binned χ^2 fit

 $\Delta m_d = 0.506 \pm 0.055 (stat) \pm 0.049 (syst) ps^{-1}$

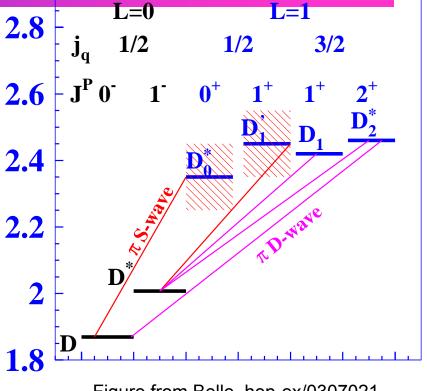
Tagging efficiency: 4.8 +/- 0.2 %Tagging purity: 73.0 +/- 2.1 %

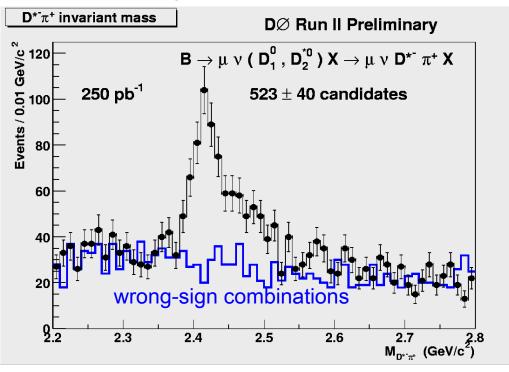
- · Already one of the best measurements at hadron collider
- · Good prospects to improve accuracy
 - · work in progress to decrease systematic uncertainty
 - · use other tagging methods
 - · add more Do decay channels

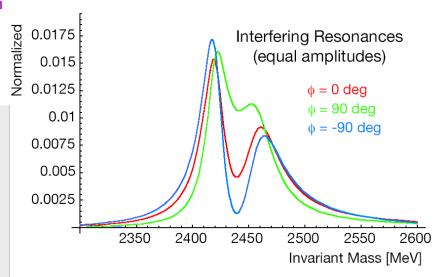
Observation of B $\rightarrow \mu \nu D^{**} X$

- D** are orbitally excited D meson $\gtrsim 2.8$ states, see diagram
- In heavy quark limit expect two sets 2.6 of doublet states
 - Two broad (decay through S-wave)
 - Two narrow (decay through D-wave)
- Narrow D**
 - $D_1^0(2420) -> D^{*+} \pi^-$
 - D*0₂(2460) -> D*+ π⁻
 - ▲ One of decay channels

 $D_1{}^0$, $D_2{}^{*0}$ have been observed and studied in several experiments, most recently by BaBar and Belle in $B^-\to D^{**0}$ π^-




Figure from Belle, hep-ex/0307021


We study D_1^0 , D_2^{*0} produced in semileptonic B decays.

Observation of B $\rightarrow \mu \nu D^{**} X$

- Start from B $\rightarrow \mu \nu D^*X$ sample, add another π^+
- Look at invariant mass of D*- π + system
- Observed merged $D_1^0(2420)$ and $D_2^{*0}(2460)$

Two interfering Breit-Wigner D** states with mass/width as measured by Belle (no resolution effects included)

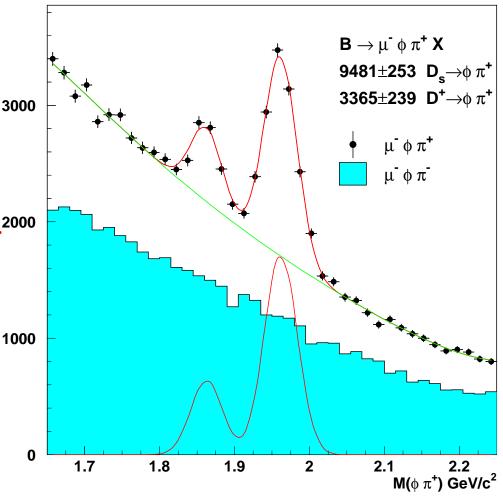
Work in progress: extract separate amplitude for each state and relative phase of interference

Unique observation at hadron collider

Preliminary result on product branching ratio

Br(B \to {D₁⁰,D₂*⁰} μ v X) \cdot Br({D₁⁰,D₂*⁰} \to D*+ π -) = 0.280 \pm 0.021 (stat) \pm 0.088 (syst) % measured by normalizing to known Br (B \to D*+ μ v X)

B_s semileptonic decays


DØ Runll Preliminary, Luminosity = 250 pb⁻¹

- Excellent yield: 9500 candidates in 250 pb⁻¹²⁰⁰⁰

- $\phi\pi$ invariant mass plot : some lifetime cuts applied

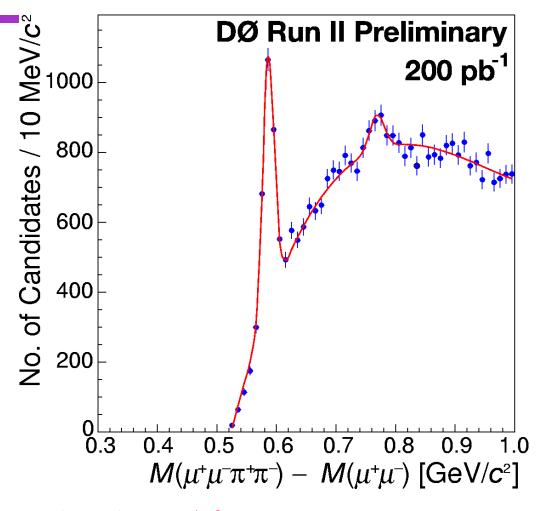
Work in progress to measure

- · B_s/B_d lifetime ratio
- first results on B_s mixing
 - need to fully understand time resolution
 - if $\Delta m_s \cong 15 \text{ ps}^{-1}$ expect a measurement with 500 pb⁻¹

$X(3872) \rightarrow J/\Psi \pi^+ \pi^-$

Last summer, Belle announced a new particle at \cong 3872 MeV/c², observed in B⁺ decays:

B⁺ \rightarrow K⁺ X(3872), X(3872) \rightarrow J/Ψ π ⁺ π ⁻


Belle's discovery has been confirmed by CDF and DØ.

DØ preliminary:

 300 ± 61 events

 4.4σ effect

 $\Delta M = 0.768 \pm 0.004$ (stat) ± 0.004 (syst) GeV/c²

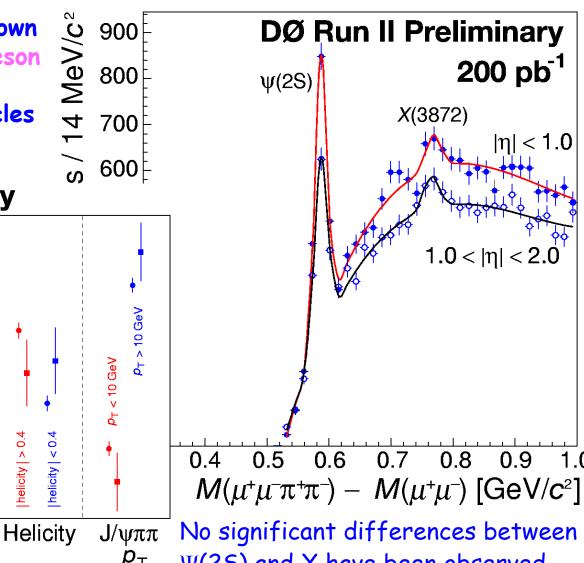
8.0

0.7

0.6

0.5

0.4


0.3

0.2

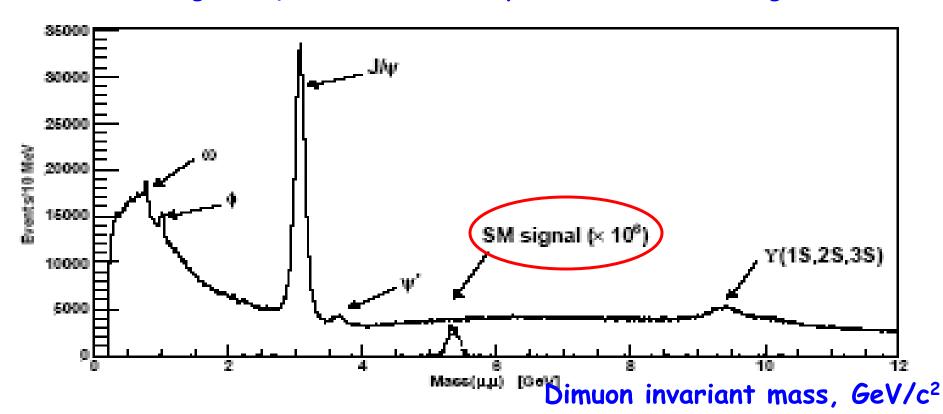
0.1

X(3872) production properties

- Nature of X(3872) is not known
 - · could be charmonium, meson molecule etc.
- Compared sample of X particles to sample of $\Psi(25)$

Isolation Decay η Length Comparison helicity | > 0.4

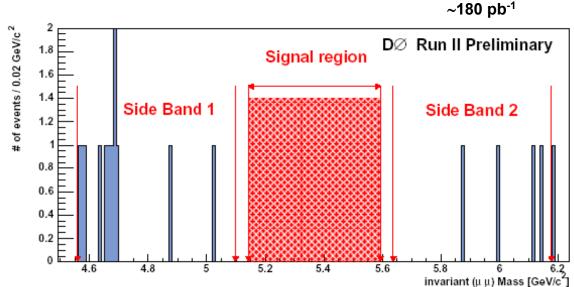
 $\Psi(25)$ and X have been observed


$B_s \rightarrow \mu^+ \mu^-$ sensitivity study

 $B_s \to \mu^+ \ \mu^-$ is a promising window on possible physics beyond the SM

Expected SM branching ratio is small:

$$\begin{array}{l} \text{Br(B}_s \rightarrow \mu^+ \ \mu^-) = (3.4 \pm 0.5) \cdot 10^{-9} \\ \text{B}_d \rightarrow \mu^+ \ \mu^- \ \text{is suppressed by additional factor} \ |V_{td}/V_{ts}| \cong 4 \cdot 10^{-2} \end{array}$$


SUSY: at large tan β enhancement of up to 2-3 orders of magnitude

$B_s \rightarrow \mu^+ \mu^-$ sensitivity study

- Optimisation based on mass sidebands using decay length, isolation and angle between muon and decay length direction
- Expected signal has been normalised to $B^{\pm} \rightarrow J/\Psi K^{\pm}$
- · After final cuts
 - expect 7.3 background events in signal region
 - · signal efficiency: 30 %

The box has NOT been opened yet

Reoptimisation still in progress - further improvements expected

Current expected limit (Feldman/Cousins):

 $Br(B_s \to \mu^+ \; \mu^-)$ < 1.0 \cdot 10⁻⁶ @ 95 % CL (stat + syst) Have sensitivity for competitive measurement

New Phenomena Searches

SUSY

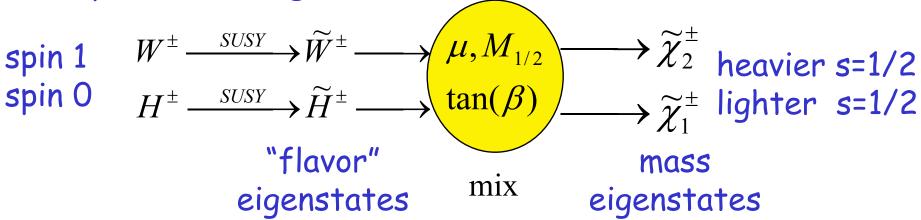
```
Search for Squarks and Gluinos in the Jets+MET Topology
Search for mSUGRA SUSY in the Like-Sign Muon Channel
Search for Chargino/Neutralino in ee(+1) Final State
Search for Chargino/Neutralino in Trilepton Final State
Search for GMSB SUSY in Di-photon Events with Large MET
Leptoquarks
```

Search for the First Generation Leptoquark

Extra Dimensions

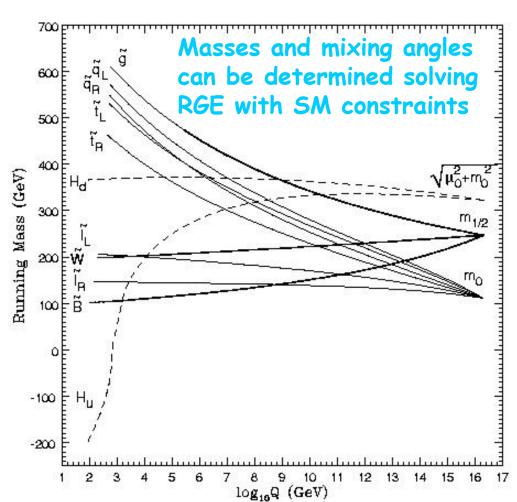
Search for LED in Jets+MET Topology
Search for Large and TeV-1 ED in Di-electron Channel
LED in Di-electron and Di-photon Channels
Z'

Search for Heavy Z' Bosons in Di-electron Channel


♦ 10 new analyses!

Supersymmetry

particles have superpartners with spin different by 1/2

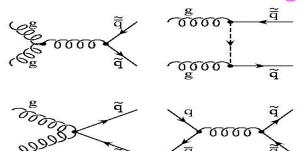

Example: Two charginos:

- Field content determines couplings and decay modes
- Four neutralinos are fermions with s = 1/2
- · Squarks are scalars (s = 0) but have two eigenstates each
- · Below assume R parity conservation which means:
 - · sparticles are produced in pairs
 - · decay products also have sparticles
 - · lightest sparticle (LSP) is stable

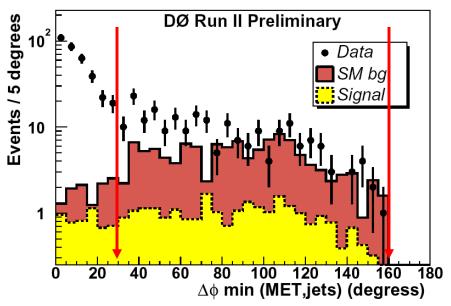
mSUGRA

Typical mass spectrum in mSUGRA

- Many results below are interpreted in mSUGRA framework
- Simplest SUSY model good benchmark
 - Requires only 5 parameters


$$M_0, M_{1/2}, \tan(\beta), sign(\mu), A_0$$

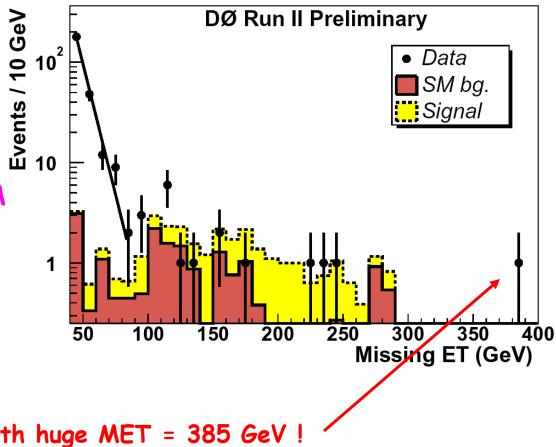
- · (Very) restricted by LEP
- · Squarks and gluinos generally not expected to be lighter than others
- · However, large parameter space can accommodate various mass spectra


Squarks and Gluinos

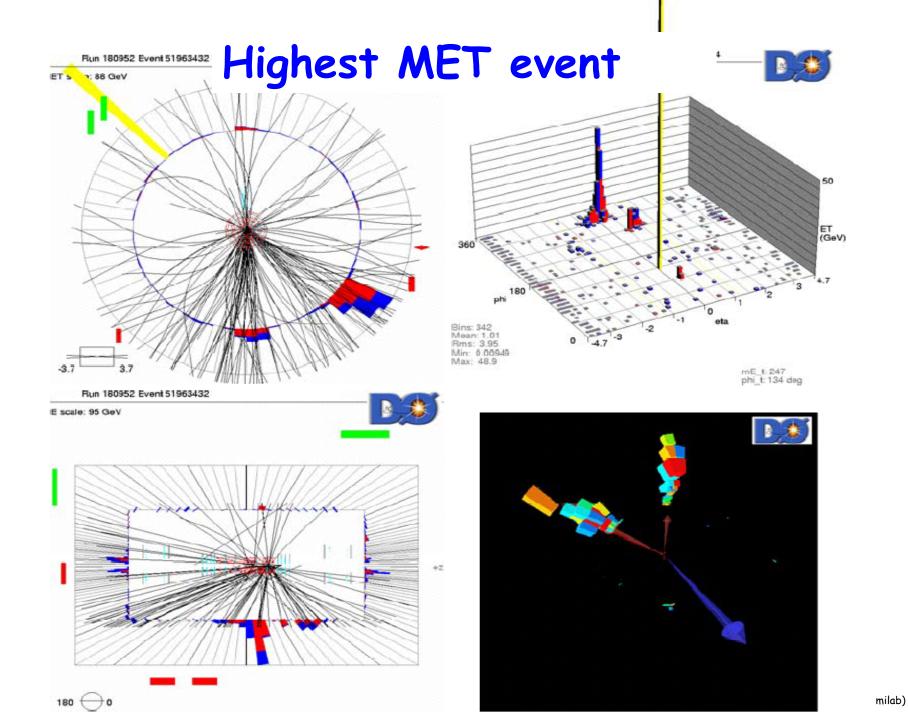
- Squarks & gluinos will be copiously produced at Tevatron
- Production x-sections does not depend on SUSY parameters
 - however have large QCD background

Squarks decay to q LSP Gluinos decay to q \overline{q} LSP

Jets + Missing Et signature

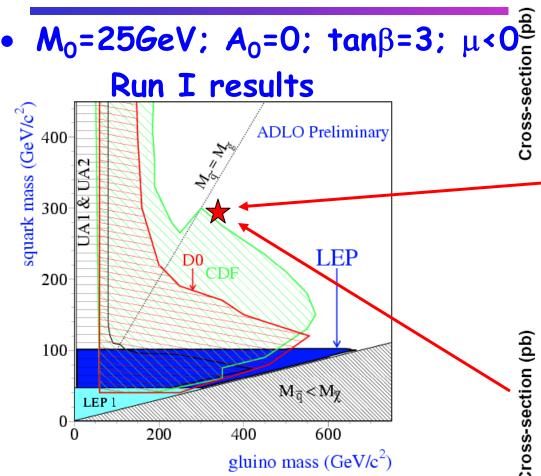

Dataset: 85 pb⁻¹ (Apr-Sept 2003) Selections

- Two jets: E_T>60 & 50 GeV
 Jet EM fraction < 0.95
- · Missing E_T > 60 GeV
- Topological cuts against mismeasured
 QCD background
 - 30 ° < $\Delta \phi$ (jet, MET) < 165 °

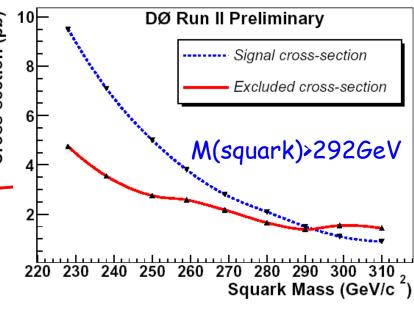


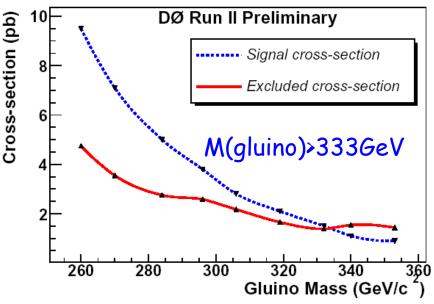
Squarks and gluinos

- Final cuts:
 - ◆ Missing E_T>175 GeV
 - → H_T>275 GeV
- 4 events left
 - 2.7 expected from SM sources: mostly Z/W production



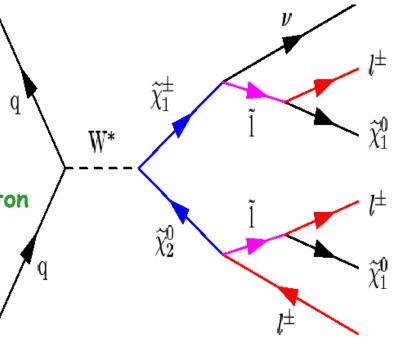
Spectacular event with huge MET = 385 GeV!





Squarks and gluinos

- Getting into new region!
- Mapping work in progress

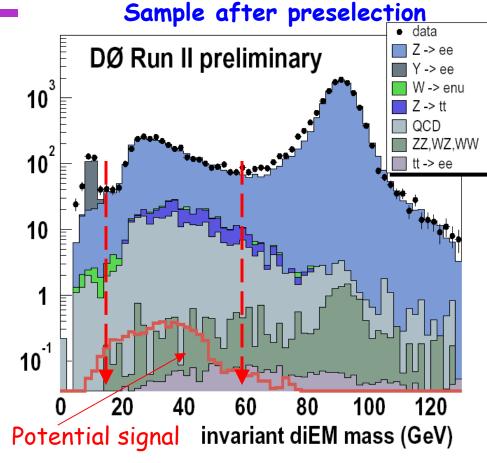


SUSY tri- & di-lepton searches

Trilepton signature is one of cleanest SUSY signatures

- + Chargino-Neutralino production
- Decay to WZ (or sleptons) + 2 LSP
- Low SM background
- But also : Small x-section
 - ▲ Leptonic Br are enhanced if slepton masses are close to gaugino (i.e. chargino_1 in mSUGRA) masses

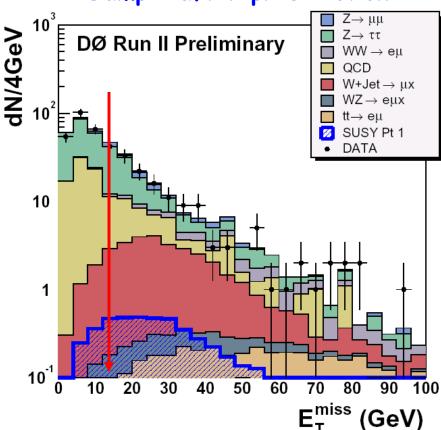
2 like-sign leptons signatures available,


Strategy:

Combine ee(l), $e\mu(l)$, $\mu^+\mu^+$

ee+lepton

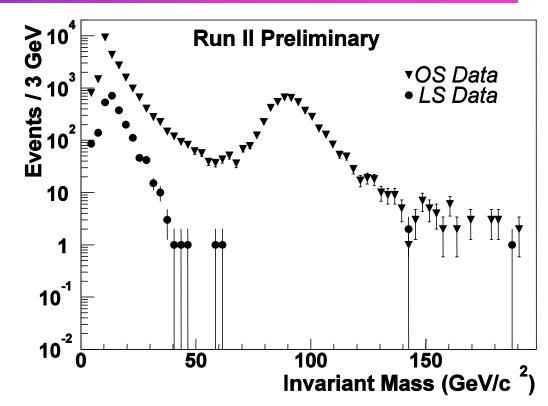
- Dataset: 175 pb⁻¹
- Selections
 - 2 Electrons: EM cluster+track match
 - P_T>12 (8) GeV/c
 - $|\eta|<1.1$ (3.0)
 - + Anti-Z
 - \blacktriangle 15 < M_{ee} < 60 GeV/ c^2
 - ▲ Δφ(ee) < 2.8
 - Anti-W \rightarrow (ev)+ γ
 - ▲ hits in silicon or tighter electron likelihood
 - Anti top
 - ▲ Veto jets with E_{T} > 80 GeV
 - Anti-Drell Yan
 - ▲ Missing E_T > 20 GeV
 - ▲ Δφ(e MET) > 0.4


- Extra lepton = isolated track
 A P_T>3GeV
- After final cuts: observe
 1 event, expect Q_{AndrerNomerotski (Fermilab)}

eµ channel

- Dataset : 158 pb⁻¹
- e: Pt >12 GeV μ : Pt > 8 GeV
- Main backgrounds:
 - Z→μμ, ττ
 - Wj, WW
 - + top
 - QCD multijet
- Selections
 - * Z/W vetos, topological cuts (e μ)
 - Missing E_T > 15 GeV
 - Jet veto
 - 15 < M(e μ) < 100 GeV

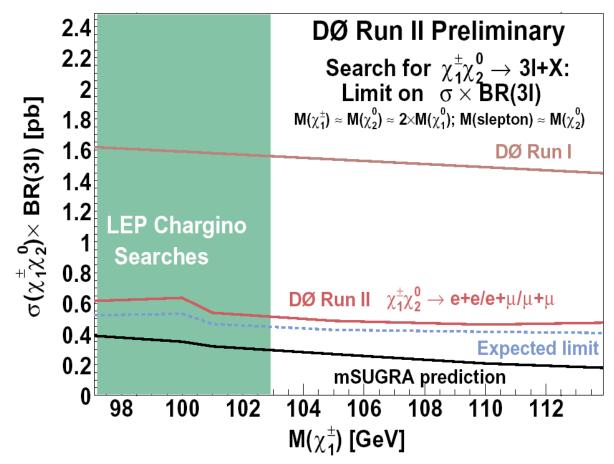
Sample after preselection



- · After final cuts 1 event left, 2.9 expected from SM sources
- · Requiring additional lepton: 0 events left, 0.54 expected
 - 0.9 SUSY events expected at best

Like-sign muons

- Dataset : 158 pb⁻¹
- Two muons
 - P_T > 11 & 5 GeV
 - calorimeter and track isolation
- Missing E_T>15 GeV
- Most backgrounds from bb/cc and sign misidentification
 - scaled from likesign data for nonisolated µ's
- Anti WZ, ZZ cuts

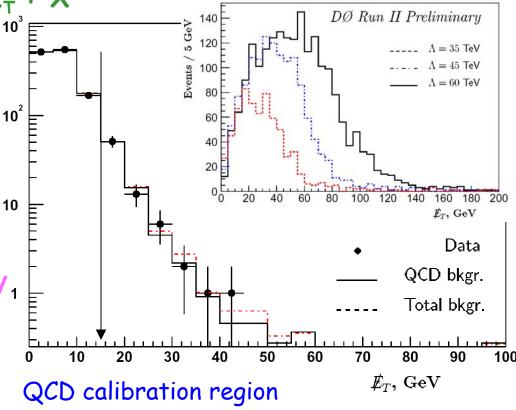


1 event survived, 0.23 expected

Combined trilepton result

- First exercise on combination of all trilepton searches
 - Correlations included

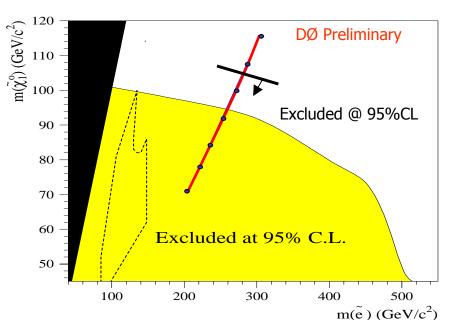
- Run I cross section limit much improved
- mSUGRA prediction within reach (for the best scenario) rei Nomerotski (Fermilab)


Di-photons: GMSB SUSY

- ullet Gauge Mediated Symmetry Breaking (GMSB) at scale Λ
 - + Light Gravitino (<<eV) is LSP, NLSP can be neutralino or slepton
- If neutralino NLSP: $\widetilde{\chi}_1^0 \to \gamma \widetilde{G}$ All standard SUSY signatures complemented by two photons

 \Rightarrow inclusive search for $\gamma\gamma E_T + X$

- Backgrounds:
 - QCD: γ +j with jet misidentified as γ
 - $W\gamma \rightarrow ev\gamma$ (track is lost)
- Selections
 - * Two photons with $P_T(\gamma) > 20 GeV_1$ in $|\eta| < 1.1$
 - Missing E_T > 40 GeV
 - MET separated from jets

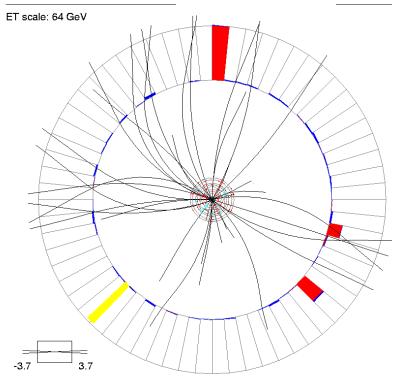


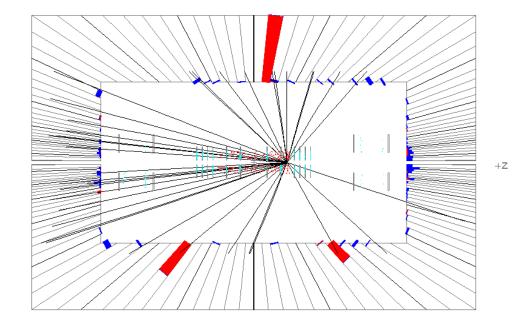
Di-photons: GMSB SUSY

σ [pb]

- Observed 1 event, expected 2.5 SM events
- Proceed to set a limit

Improves LEP limit for this model

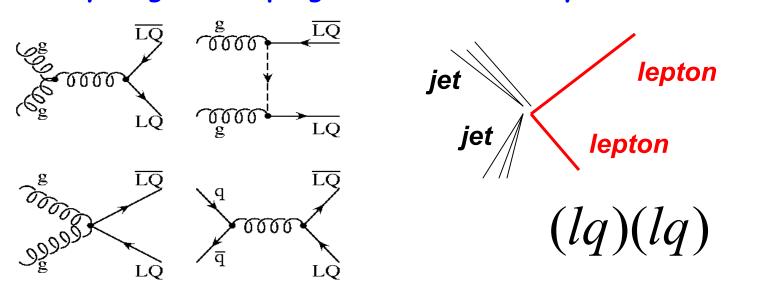



Post-Shutdown Data: $\gamma\gamma$ e Event

Run 187800 Event 82968527

Run 187800 Event 82968527

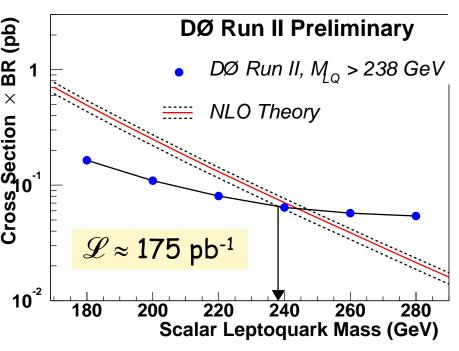
E scale: 63 GeV

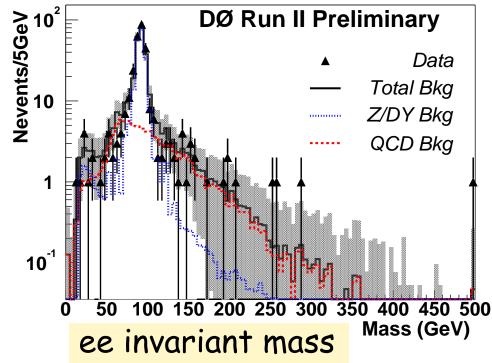

 $E_{T} \gamma 1 = 69 \text{ GeV}$ $E_{T} \gamma 2 = 27 \text{ GeV}$ $p_{T} e = 24 \text{ GeV/c}$ 180 🔾 0

Too new: not included in the above analysis

Leptoquarks

- · LQ are coupled to both quarks and fermions
 - · Predicted in many Grand Unification extensions of SM
 - · Carry both lepton and color quantum numbers
- · Family diagonal coupling to avoid FCNC beyond CKM mixing


Searched first generation LQ in channels : eejj and evjj



First generation LQ: eejj channel

· Background:

- \rightarrow Drell-Yan/Z + jets,
- \rightarrow QCD (with 2 fakes EM)
- \rightarrow $t\overline{t}$

Selections

→Electrons : Et > 25 GeV

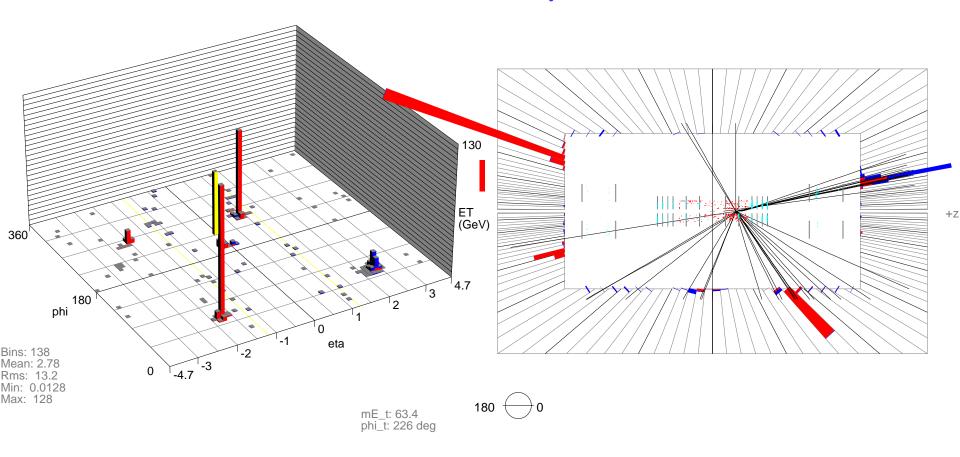
 \rightarrow Jets: Et > 20 GeV, |eta|<2.4

 \rightarrow Z veto

 \rightarrow S_T > 450 GeV

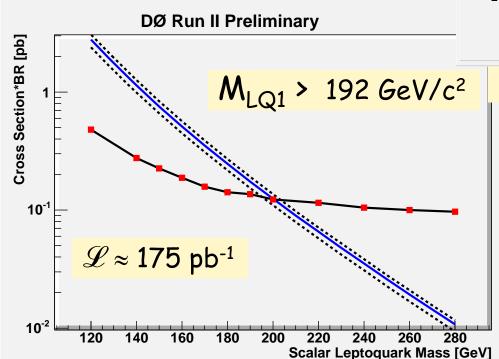
Signal Eff = 12 - 33 %

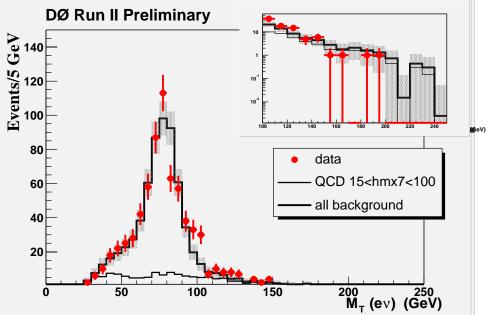
milab)



eejj candidate event

75 GE Scale: 134 GeV COS -



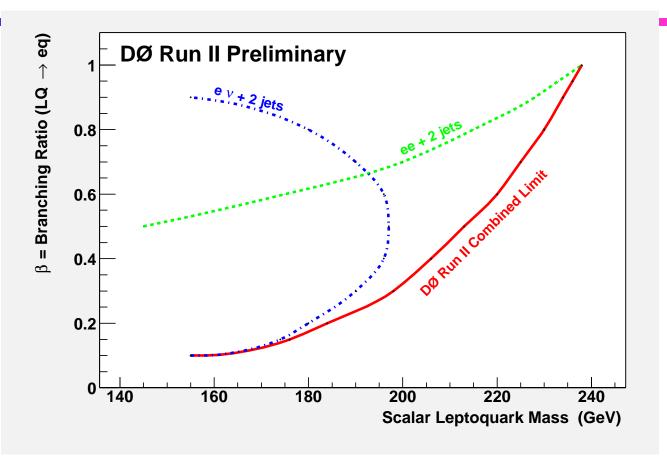


First generation LQ: evjj channel

· Background:

- \rightarrow W + jets,
- \rightarrow QCD (with γ or fake EM)
- \rightarrow $t\overline{t}$

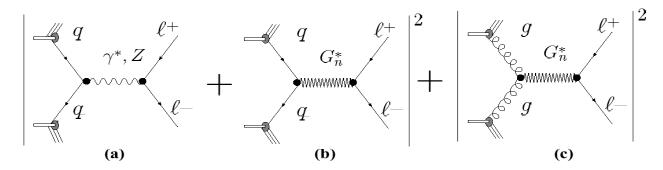
ev transverse mass, GeV/c²


Selections

- →Electron : Et > 35 GeV
- \rightarrow Jets: Et > 25 GeV, |eta|<2.5
- →MET > 30 GeV
- \rightarrow M_T(ev) > 130 GeV
- \rightarrow S_T > 330 GeV

Signal Eff = 13 - 25 %

First generation LQ: combined result

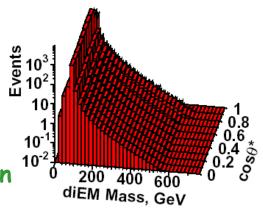


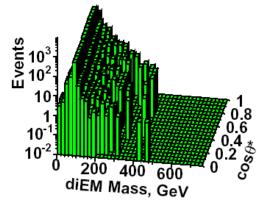
Comparable to combined CDF/DØ Run I result: 242 GeV in eejj channel

Large Extra Dimensions (LED)

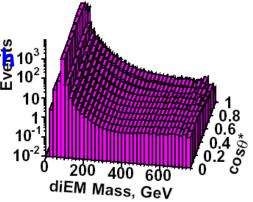
- Weakness of gravity is explained by Extra Dimensions
 - SM is confined to 3D-world (brane)
 - Gravity propagates in ED and is as strong as other interactions but this is apparent only to (3+n)-dimensional observer
- Can detect LED via virtual graviton effects
 - Searched for anomalies in e⁺e⁻ and γγ events

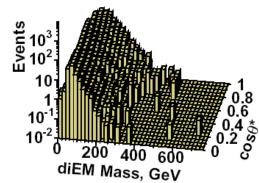
- * Also searched for monojet signatures
 - \blacktriangle Jet recoiling against G_n


Search for ED in ee/yy channel

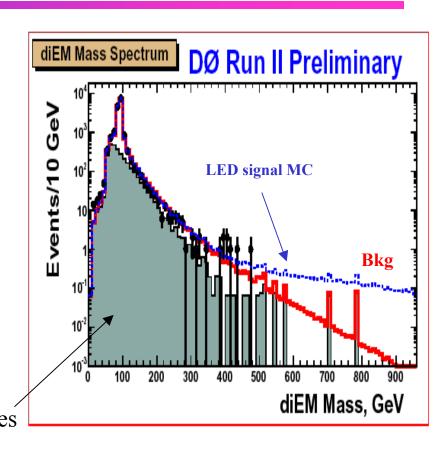

Strategy

- Use di-EM objects
 - \blacktriangle Includes both ee and $\gamma\gamma$
- + Fit
 - ▲ di-EM invariant mass
 - \blacktriangle Cos θ^* (scattering angle in rest frame)
- Dataset 200 pb-1
- Selections
 - + Two EM with Et > 25 GeV with 103 tight quality cuts
 - Fiducials
 - ▲ |eta| < 1.1 for CC
 - ▲ 1.5 < |eta| < 2.4 for EC
 - ▲ Consider CC-CC and CC-EC combinations


SM Prediction DØ Run II Preliminary



ED Signal


LED signal limits

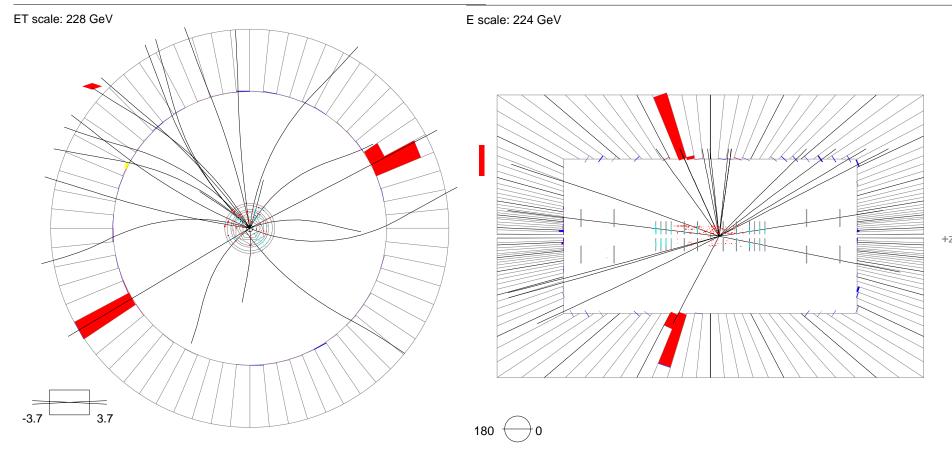
- $\eta_{G} = F/M_{S}^{4}$
 - * Single parameter for ED effects
- Set limits using GRW formalism:
 - + F=1
- Use CC-CC & CC-EC combinations independently, combine final results

Results:

Run II: Ms > 1.36 TeV

Run I + II : Ms > 1.43 TeV

most restrictive limit to date

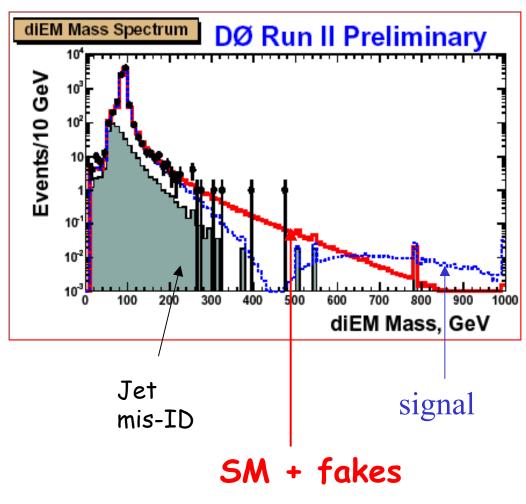


Highest mass Drell-Yan event ever observed

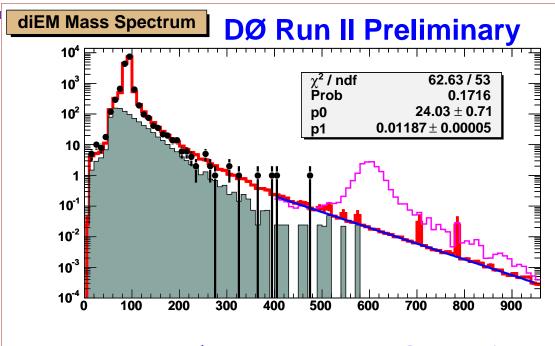
Invariant mass 475 GeV/c², cos θ * = 0.01

Run 177851 Event 28783974 Thu Dec 4 18:34:19 2003

Run 177851 Event 28783974 Thu Dec 4 18:34:18 2003



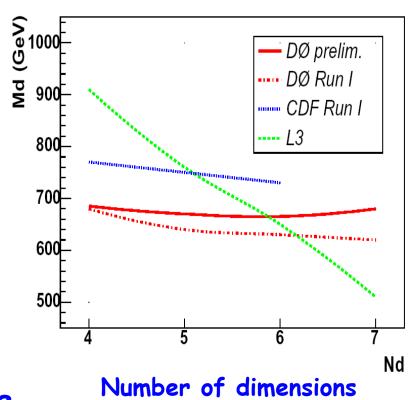
Dedicated ee Search for TeV⁻¹ Dimensions


• Another ED model:

- Fermions confined to 3D world
- SM gauge bosons propagate in single TeV⁻¹ ED
- Predicts Kaluza-Klein states of gauge bosons (W,Z,g)
- $R = 1/M_c$ is size of compact dimension for gause bosons
- Predicts strong negative interference effects
 - unlike LED discussed before
- Use di-electron dataset
- Find: M_c > 1.12 TeV (95% CL)
 - First dedicated search

Z' Limits from ee: SM, E₆

- Dataset 200 pb⁻¹ same as in LED analysis
- Limits on Z' mass in GeV/c²:


SM couplings	Run I 670		Run II 780	
E ₆ couplings	Z _I	Z χ	Ζ _Ψ	Zη
	575	640	650	680

LED with jets + MET

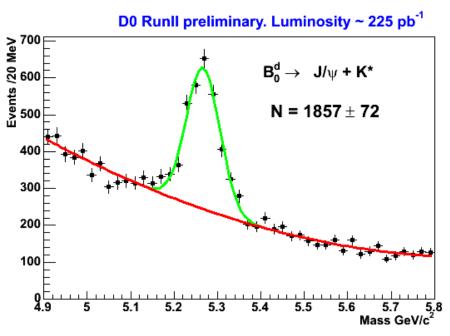
Last result for today before summary

- Dataset 85 pb⁻¹
- Monojet-like signature
 - $J_1 > 150 \text{ GeV}, J_2 < 50 \text{ GeV}$
 - MET > 150 GeV
 - $\Delta\Phi_{\text{J,MET}}$ > 30°
- Background: Z(→vv)+jet(s)
 - Large energy scale uncertainty
- Observe 63; expect 100 :
 set a limit on LED mass scale

Summary

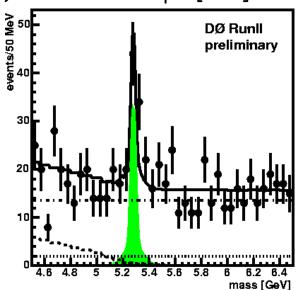
- Presented new DØ results bound for Moriond
 - * Analyzed datasets two times larger than ever before
- B-physics at DØ is online with world class results
 - * Record semileptonic & exclusive B samples
 - Precise measurement of B⁺/B⁰ lifetime ratio
- New Phenomena searches are already probing grounds beyond Run I in
 - Supersymmetry
 - Large Extra Dimensions and Z' sectors

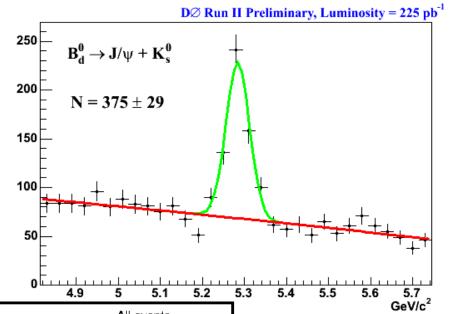
 QCD / EW / Top / Higgs part to follow in two weeks in Wine & Cheese talk by Gordon Watts

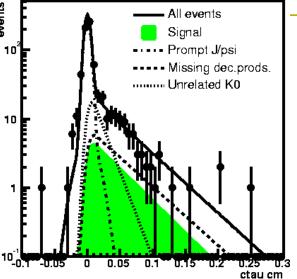


Back-up slides

Exclusive B decays




Lifetime in Exclusive B decays


Preliminary lifetime measurement using $B^0 \rightarrow J/\Psi(\mu^+\mu^-) K_s(\pi^+\pi^-)$:

$$\tau(B^0)$$
 = 1.56 $^{+0.32}_{-0.25}$ (stat) \pm 0.13 (syst) ps

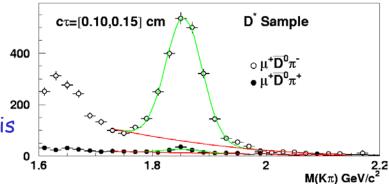
Consistent with world average: $\tau(B^0)$ = 1.542 \pm 0.016 ps [PDG]

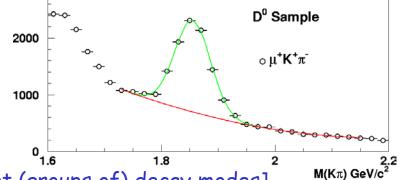
$\tau(B^+)/\tau(B^0)$: fitting strategy

Group events into 8 bins of
 Visible Proper Decay Length (VPDL):

VPDL =
$$L_T / p_T(\mu D^0) \cdot M_B$$

 L_T = transverse decay length


- Measure $r_i = N(\mu^+ D^{*-})/N(\mu^+ D^0)$ in each bin i. 2 Combinatorial background with true D^0 in D^* sample is subtracted using wrong-sign distribution (normalisation from full sample, previous slide).
 - ⇒ no need for parameterisation of background VPDL distribution
- · Additional inputs to the fit:
 - sample compositions (previous slide)
 - K-factors (from simulation)


$$K = p_T(\mu D^0) / p_T(B)$$
 [separately for different (groups of) decay modes]

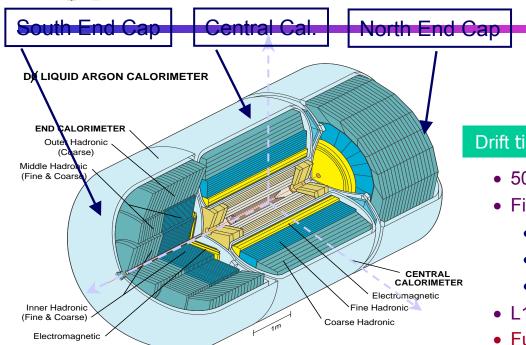
- Relative reconstruction efficiencies for different decay modes B (from simulation)
- Slow pion reconstruction efficiency [flat for $p_T(D^0) > 5$ GeV (one of our cuts)]
- Decay length resolution (from simulation)
- $-\tau(B^+) = 1.674 \pm 0.018 \text{ ps } [PDG]$

one example VPDL bin

DØ Runll Preliminary, Luminosity=250 pb⁻¹

Towards B_s mixing

Trigger on opposite side muon which is used also for flavor tagging


Therefore have access to

Fully reconstructed B_s / B_d hadronic decays:

- Poor statistics
- Excellent proper time resolution
- Need a few fb⁻¹ of data to reach $\Delta m_s \cong 18 \text{ ps}^{-1}$.

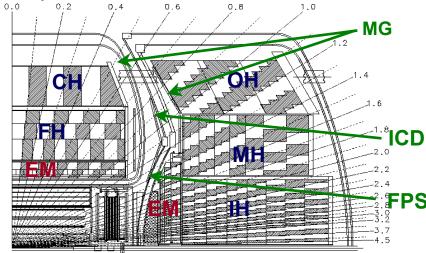
Calorimeters

- **Liquid Argon sampling**
 - · uniform response, rad. hard, fine spatial segmentation
 - · LAr purity important
- Uranium absorber (Cu/Steel CC/EC for coarse hadronic)
 - nearly compensating, dense ⇒ compact
- Uniform, hermetic with full coverage
 - $|\eta| < 4.2 \ (\theta \approx 2^{\circ}), \ \lambda_{int} \sim 7.2 \ (total)$
- Single particle energy resolution
 - e: $\sigma/E = 15\% / \sqrt{E} \oplus 0.3\% \pi$: $\sigma/E = 45\% / \sqrt{E} \oplus 4\%$

Readout Cell

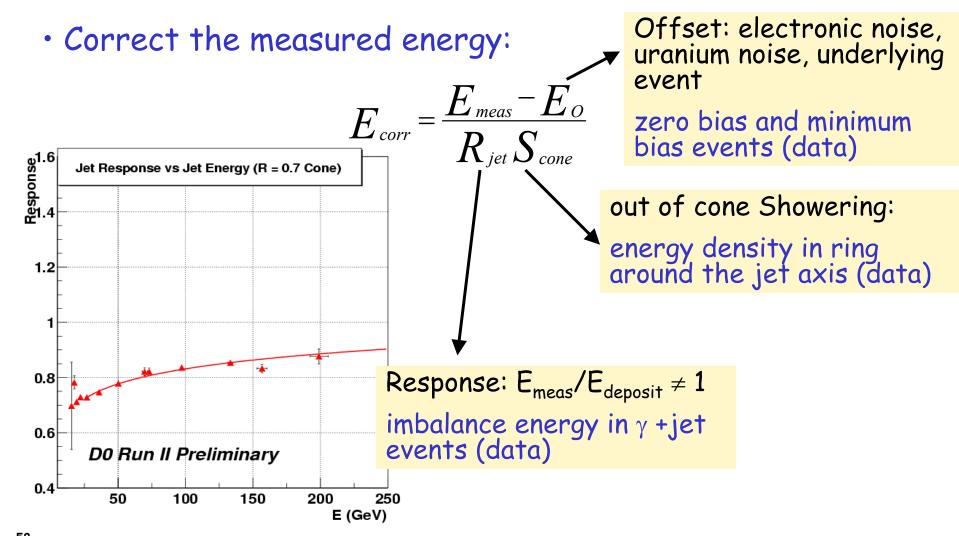
Cu pad readout on 0.5 mm G10 with

LAr in gap


2.3 mm

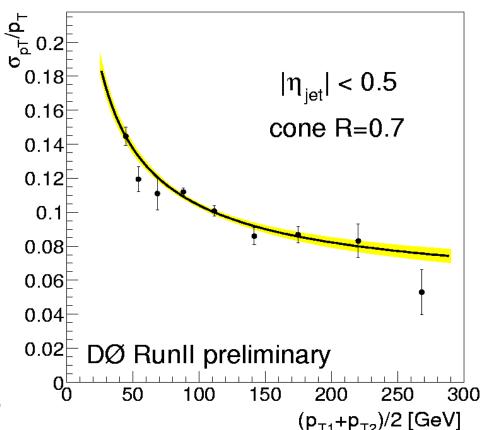
Ur absorber

resistive coat epoxy


Drift time ~430 ns

- 50k readout cells (< 0.1% bad)
- Fine segmentation
 - 5000 pseudoprojective towers (0.1 × 0.1)
 - 4 EM layers, shower-max (EM3): 0.05 × 0.05
 - 4/5 Hadronic (FH + CH)
- L1/L2 fast Trigger readout 0.2 × 0.2 towers
- Fully commissioned

Jet Energy Scale Corrections



Jet Resolution

- Jet P_T resolution:
 - → using energy asymmetry in dijet events

Jet p_T Resolution

$$A = \frac{p_T^{Jet1} - p_T^{Jet2}}{p_T^{Jet1} + p_T^{Jet2}} \quad \frac{\sigma_{p_T}}{p_T} = \sqrt{2}\sigma_A$$

parametrized as:

$$\frac{\sigma_{p_T}}{p_T} = \sqrt{\frac{N^2}{P_t^2} + \frac{S^2}{P_t} + C^2}$$

$$N = 0.0 \pm 2.2$$
, $S = 0.902 \pm 0.045$, $C = 0.052 \pm 0.008$